Characteristic features and ligand specificity of the two olfactory receptor classes from Xenopus laevis.

نویسندگان

  • M Mezler
  • J Fleischer
  • H Breer
چکیده

Amphibia have two classes of olfactory receptors (ORs), class I (fish-like receptors) and class II (mammalian-like receptors). These two receptor classes correspond to the two classes identified in other vertebrates, and amphibians thus provide a unique opportunity to compare olfactory receptors of both classes in one animal species, without the constraints of evolutionary distance between different vertebrate orders, such as fish and mammals. We therefore identified the complete open reading frames of class I and class II ORs in Xenopus laevis. In addition to allowing a representative comparison of the deduced amino acid sequences between both receptor classes, we were also able to perform differential functional analysis. These studies revealed distinct class-specific motifs, particularly in the extracellular loops 2 and 3, which might be of importance for the interaction with odorants, as well as in the intracellular loops 2 and 3, which might be responsible for interactions with specific G-proteins. The results of functional expression studies in Xenopus oocytes, comparing distinct receptor types, support the idea that class I receptors are activated by water-soluble odorants, whereas class II receptors are activated by volatile compounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Two classes of olfactory receptors in xenopus laevis

Xenopus laevis possess a gene repertoire encoding two distinct classes of olfactory receptors: one class related to receptors of fish and one class similar to receptors of mammals. Sequence comparison indicates that the fish-like receptors represent closely related members of only two subfamilies, whereas mammalian-like receptors are more distantly related, most of them representing a different...

متن کامل

The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane .

Abstract The S362A mutation block ROMK2 (Kir1.1b) endocytosis in Xenopus laevis oocyte membrane . Saeed Hajihashemi1 , 1-Assistant professor, PhD in Physiology, Department of Physiology, School of Medical science, Arak University of Medical Sciences. Introduction: ROMK channel is localized on the apical membrane of the nephron. Recent studies suggest that endocytosis of ROMK chan...

متن کامل

Expression of hsp90 Alpha and hsp90 Beta during Xenopus laevis Embryonic Development

Background: Members of the eukaryotic Hsp90 family function as important molecular chaperones in the assembly, folding and activation of cellular signaling in development. Two hsp90 genes, hsp90 alpha and hsp90 beta, have been identified in fish and homeothermic vertebrates but not in poikilothermic vertebrates. In the present study, the expression of hsp90 alpha and hsp90 beta genes in Xenopus...

متن کامل

Classes and Narrowing Selectivity of Olfactory Receptor Neurons of Xenopus laevis Tadpoles

In olfactory receptor neurons (ORNs) of aquatic animals amino acids have been shown to be potent stimuli. Here we report on calcium imaging experiments in slices of the olfactory mucosa of Xenopus laevis tadpoles. We were able to determine the response profiles of 283 ORNs to 19 amino acids, where one profile comprises the responses of one ORN to 19 amino acids. 204 out of the 283 response prof...

متن کامل

Specificity and sensitivity of a human olfactory receptor functionally expressed in human embryonic kidney 293 cells and Xenopus Laevis oocytes.

Here, we provide the first evidence for functional expression of a human olfactory receptor protein (OR17-40) and show that recombinant olfactory receptors can be functionally expressed in heterologous systems. A mixture of 100 different odorants (Henkel 100) elicited a transient increase in intracellular [Ca(2+)] in human embryonic kidney 293 (HEK293) cells stably or transiently transfected wi...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of experimental biology

دوره 204 Pt 17  شماره 

صفحات  -

تاریخ انتشار 2001